CompactPCI® Serial

How to build multi-cluster systems and super computers based on COTS SBC and switch components

Extension of CompactPCI

Extension of the well established CompactPCI® standard

- Overcomes the I/O speed limitations of the parallel CompactPCI bus interface
- Uses exclusively high-speed serial bus communications, available concurrently, across the midplane
- Uses existing 19 inch mechanics (Eurocards)

mikro elektroni

ambh · nürnbera

The CompactPCI Serial Architecture

- Simple star for PCI Express, SATA and USB
- Combined with a complete mesh for Ethernet

Functions without switches and bridges

CompactPCI System and Peripheral Slots

Defines one system slot and up to 8 peripheral slots on a standard backplane.

Integration of Mezzanine Cards

CompactPCI Serial permits the connection of mezzanine cards directly to the backplane

Using Ethernet: Star Architecture

Star configuration examples

- Switch on the system slot (mezzanine)
- Ethernet on standard backplane
- e.g. 4x same processor board

- No CPU in system slot
- Switch as hub of the system
- e.g. 3x same processor board

Using Ethernet: Mesh and Ring Architecture

LAN

Full mesh configuration

- Symmetrical multi-processing
- All boards connected by Ethernet
- Good scalability
- Very high availability

Ring configuration

- Failure of one board does not stop the system
- Same processor boards
- Standard backplane

Multiprocessing Cluster System

- All peripheral slots are identical
- Each CPU board can be plugged on every peripheral slot
- Standard software, standard backplane

High Performance Embedded Computing Cluster

	I D o Ho ad pl	
	1210 0	
	100 00 0 E	
	and the sa	
5	D o llo ob al	
	8	

Embedded Solutions

Sub cluster

- 9 CPU boards per 3U backplane
- Main CPU connects via 1 Gb/s full mesh Ethernet to sub CPUs
- 72 cores with Intel quad-core i7 + HT (8 GB memory, each)

Total cluster

- Ethernet connection of 8 sub clusters
- Controlled by one central storage system
- ◆ 576 cores plus management units

olutions OpenCL 3.5 3 Embedded 2.5 2 1.5 1 0.5

CPU vs. GPGPU – computing performance

mikro elektronik gmbh ∙ nürnberg

HPEC powered by GPGPU

- One Intel quad-core CPU
- Up to 7 GPGPU boards directly controlled by one system slot CPU via PCIe x8 / PCIe x1
- Provides 3360 computing core (shaders)
- Standard software, standard backplane

Using Ethernet: Safe Computer Systems

Example 2003 system

- Full mesh architecture for wiring 2-out-of-3 systems
- Redundancy to detect errors and raise availability
- 3 identical CPU cards on standard backplane
- Independent redundant switch cards on standard backplane
- Ethernet to compare and align results of the sub units

Thank you for your attention!

Embedded Solutions

Rugged Computer Boards and Systems for Harsh, Mobile and Mission-Critical Environments

As a member of the UN Global Compact Initiative, MEN is committed to follow the principles of human rights, labour, environment and anticorruption as defined by this organization.

